

Friday 16 May 2014 – Afternoon

AS GCE MATHEMATICS

4725/01 Further Pure Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4725/01
- List of Formulae (MF1)

Duration: 1 hour 30 minutes

Other materials required: • Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

1 Find the determinant of the matrix $\begin{pmatrix} a & 4 & -1 \\ 3 & a & 2 \\ a & 1 & 1 \end{pmatrix}$.

- 2 The complex number 7 + 3i is denoted by z. Find
 - (i) |z| and $\arg z$, [2]
 - (ii) $\frac{z}{4-i}$, showing clearly how you obtain your answer. [3]
- 3 The matrices **A** and **B** are given by $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -4 & 5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix}$ and **I** is the 2 × 2 identity matrix. Find
 - (i) 4A B + 2I, [2]
 - (ii) A^{-1} , [2]

(iii)
$$(AB^{-1})^{-1}$$
. [3]

- 4 (a) Find the matrix that represents a shear with the *y*-axis invariant, the image of the point (1, 0) being the point (1, 4).
 - **(b)** The matrix **X** is given by $\mathbf{X} = \begin{pmatrix} \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \\ -\frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix}$.
 - (i) Describe fully the geometrical transformation represented by X. [2]
 - (ii) Find the value of the determinant of X and describe briefly how this value relates to the transformation represented by X. [2]
- 5 The cubic equation $2x^3 + 3x + 3 = 0$ has roots α , β and γ .
 - (i) Use the substitution x = u + 2 to find a cubic equation in u. [3]
 - (ii) Hence find the value of $\frac{1}{\alpha 2} + \frac{1}{\beta 2} + \frac{1}{\gamma 2}$. [4]

6 (i) Show that
$$\frac{1}{r^2} - \frac{1}{(r+2)^2} \equiv \frac{4(r+1)}{r^2(r+2)^2}$$
. [2]

(ii) Hence find an expression, in terms of *n*, for $\sum_{r=1}^{n} \frac{4(r+1)}{r^2(r+2)^2}$. [6]

(iii) Find
$$\sum_{r=5}^{\infty} \frac{4(r+1)}{r^2(r+2)^2}$$
, giving your answer in the form $\frac{p}{q}$ where p and q are integers. [2]

2

[3]

- 7 The loci C_1 and C_2 are given by $\arg(z-2-2i) = \frac{1}{4}\pi$ and |z| = |z-10| respectively.
 - (i) Sketch on a single Argand diagram the loci C_1 and C_2 . [4]
 - (ii) Indicate, by shading, the region of the Argand diagram for which

$$0 \le \arg(z - 2 - 2i) \le \frac{1}{4}\pi$$
 and $|z| \ge |z - 10|$. [3]

8 (i) Show that
$$\sum_{r=n}^{2n} r^3 = \frac{3}{4}n^2(n+1)(5n+1).$$
 [4]

(ii) Hence find
$$\sum_{r=n}^{2n} r(r^2 - 2)$$
, giving your answer in a fully factorised form. [5]

9 The roots of the equation $x^3 - kx^2 - 2 = 0$ are α , β and γ , where α is real and β and γ are complex.

(i) Show that
$$k = \alpha - \frac{2}{\alpha^2}$$
. [2]

(ii) Given that $\beta = u + iv$, where u and v are real, find u in terms of α . [4]

(iii) Find
$$v^2$$
 in terms of α . [4]

10 The sequence u_1, u_2, u_3, \ldots is defined by $u_n = 5^n + 2^{n-1}$.

(i) Find
$$u_1, u_2$$
 and u_3 . [2]

(ii) Hence suggest a positive integer, other than 1, which divides exactly into every term of the sequence. [1]

(iii) By considering $u_{n+1} + u_n$, prove by induction that your suggestion in part (ii) is correct. [5]

END OF QUESTION PAPER

Question		Answer	Marks	Guidance	
1			M1	Show correct expansion process for 3×3	Condone sign errors for first M1 M2 for the "diagonal" method
			M1	Correct evaluation of any 2×2	
		$2a^2 + 6a - 15$	A1	Obtain correct answer i.s.w.	Det = $1/(2a^2 + 6a - 15)$ only A0
			[3]		
2	(i)	$ z = \sqrt{58}$ or 7.62	B1	Obtain correct value, 3 s.f. or better	
		$\arg z = 23.2(^{\circ}) \text{ or } 0.405 \text{ or } 0.129\pi$	B1	Obtain correct value, 3 s.f. or better	arctan(3/7) gets B0
			[2]		
	(ii)	Either	M1	Multiply numerator & denominator by conjugate	
		$\frac{25}{17} + \frac{19}{17}i$	A1	Obtain correct numerator or real part	$\frac{28+19i-3}{16+1}$ gets A0 A0
		17 17	A1	Obtain correct denominator or imaginary part	16+1 0
			[3]		
		Or	M1	Find and attempt to solve a pair of simultaneous	
		$\frac{25}{17}$ and $\frac{19}{17}$		equations for real and imaginary parts of answer Obtain correct answers	
		17 17	A1 A1		Candana missing baselets in (i)
$\frac{1}{17}(25+19i).3$	(i)		B1	2 elements correct	Condone missing brackets in (i) (ii) & (iii).
		$\begin{pmatrix} 7 & 3 \\ -18 & 19 \end{pmatrix}$	B1	All elements correct	
			[2]		
	(ii)		B1	Both diagonals correct, ignore determinant	
		$\frac{1}{14} \begin{pmatrix} 5 & -1 \\ 4 & 2 \end{pmatrix}$ or equivalent	B1		$\frac{\binom{5}{4} - 1}{14}$ is OK for 2 nd B1
			[2]		
	(iii)	$(\mathbf{AB}^{-1})^{-1} = \mathbf{BA}^{-1}$ or $\mathbf{B}^{-1} = \frac{1}{7} \begin{pmatrix} 3 & -1 \\ -2 & 3 \end{pmatrix}$		Correct result seen or used	
$\frac{1}{14} \begin{pmatrix} 5 & -1 \\ 4 & 2 \end{pmatrix}$			M1	Multiplication attempt for any pair of 2×2 matrices, 2 elements correct, but not I	
14(4 2)		$\frac{1}{14} \begin{pmatrix} 19 & -1 \\ 22 & 4 \end{pmatrix}$	A1	Correct answer a.e.f.	
			[3]		

Question			Answer	Marks	Guidance	
4	(a)		$\begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}$	B1 B1	Each column correct	
	(b)	(i)		B1 B1	Rotation, 45° or $\pi/4$ clockwise or equivalent	Must be rotation and no other transformation, otherwise 0/2
	(b)	(ii)	(det X =) 1	[2] B1 B1ft [2]	Correct value Scale factor for are a or equivalent	e.g. area unchanged
5	(i)		$2u^3 + 12u^2 + 27u + 25 = 0$	M1 A2 [3]	Substitute and attempt to simplify Obtain correct equation, A1 for only 1 error	Missing $= 0$ is an error
	(ii)		$\frac{Either}{\sum \alpha'\beta'} \\ \frac{\alpha'\beta'\gamma'}{\alpha'\beta'\gamma'}$	M1 A1	Combine 3 terms with correct denominator Obtain correct expression in their notation	
			$-\frac{27}{25}$	M1 A1ft	Attempt to use values from (i) correctly Obtain correct answer with no errors seen	Must be $\pm c/a$ and $\pm d/a$ for M1 ft for their answer in (i)
			$Or 25y^3 + 27y^2 + 12y + 2 = 0$	[4] M1 A1ft M1 A1ft	$y = \frac{1}{u}$ Obtain correct cubic equation, from their (i) Use correct symmetric function Obtain correct answer	
			$\frac{Or}{\sum \alpha'\beta'} \frac{\alpha'\beta'\gamma'}{\alpha'\beta'\gamma'}$	M1 A1 M1 A1	Combine 3 terms with correct denominator Obtain correct expression in their notation Expand numerator and denominator and use values from original equation correctly Obtain correct answer with no errors seen	Condone \pm , but must be "/2"

Question		Answer	Marks	Guidance	
6	(i)		M1	Combine with a correct denominator	
			A1	Obtain given answer correctly	
			[2]		
	(ii)		M1	Express as differences using (i)	
			M1	Attempt this for at least first 3 terms	
			A1	First 3 terms all correct	
			A1	Last 2 terms all correct	
			M1	Show correct cancelling	
		1,1 1 1	A1	Obtain correct answer i.s.w.	Final answer must be in terms of n
		$1 + \frac{1}{4} - \frac{1}{(n+1)^2} - \frac{1}{(n+2)^2}$			
			[6]		
	(iii)	61	M1	Start differences at $n = 5$ or S_{∞} - S_4	$1 + \frac{1}{4} - (1 - \frac{1}{4} - \frac{1}{5^2} - \frac{1}{6^2})$
		900	A1	Obtain correct answer, with no errors seen	$1 + \frac{1}{4} - (1 - \frac{1}{4} - \frac{1}{5^2} - \frac{1}{6^2})$
			[2]		
7	(i)		B1	Half line,	Not line segment $e.g(0, 0)$ to (2,
					2)
			B1	starting at $(2, 2)$ with +ve slope upwards	Must be half line
			B1	Vertical line	
			B1	Clearly $x = 5$ (must be vertical)	
			[4]		
	(ii)		B1	Shade below sloping line and above horizontal through their (2, 2)	Could be for a line segment, could be earned if C_2 horizontal
			B1	To right of their vertical line	
			B1	Completely correct diagram	6/6 must be earned so far
			[3]		
8	(i)		M1	Difference of sum to $2n$ and $n-1$	
			A1	Correct unsimplified answer	$\frac{1}{4}(2n)^2(2n+1)^2 - \frac{1}{4}(n-1)^2n^2$
			M1	Sensible attempt to factorise, at least factor n^2	
			A1	Obtain given answer no errors seen	
			[4]		

Question		Answer	Marks	Guidance	
	(ii)		M1	Difference of (i) and another standard result	
			M1	Difference of $\sum_{1}^{2n} r - \sum_{1}^{k} r$ for $k = n - 1$ or n	$\frac{1}{2}(2n)(2n+1) - \frac{1}{2}n(n-1)$
			A1	Obtain complete unsimplified expression	(i) - 2 x above
			M1	Sensible attempt to factorise, at least factor $n(n+1)$	
		$\frac{3}{4}n(n+1)^2(5n-4)$	A1	Obtain correct answer	$(n+1)(n+1)$ is OK for $(n+1)^2$
			[5]		
9	(i)	Either	M1	Substitute α into equation and rearrange	$\alpha^3 - k\alpha^2 - 2 = 0$
		$k = \alpha - \frac{2}{\alpha^2}$	A1	Obtain given answer a.e.f.	
			[2]		
		Or	M1 A1	Substitute for k and x in terms of α and simplify Show simplification leads to consistency	e.g. "LHS = 0"
		Or	M1 A1	Eliminate β and γ from symmetric functions Obtain given answer correctly	Don't penalise sign errors
	(ii)		B1 M1*	State or use $(\gamma) = u - iv$ Use sum of roots $= (\pm)k$ (Can use $\sum \alpha \beta$ with $\alpha \beta \gamma$)	$\alpha + u + iv + u - iv = -(-k)$
		$u = -\frac{2}{2\sigma^2}$ or better	DM1	Rearrange to get <i>u</i>	$\alpha + 2u = \alpha - \frac{2}{\alpha^2}$
		202	A1 [4]	Obtain correct answer	-

Question		Answer	Marks	Guidance	
	(iii)		M1*	Use product of roots = $(\pm)2$ or $\sum \alpha \beta = 0$	In terms of <i>u</i> and <i>v</i>
		$\alpha(u^2 + v^2) = 2 \text{ or } 2\alpha u + u^2 + v^2 = 0$	A1	Obtain correct answer	
			DM1	Substitute for <i>u</i> and rearrange to get v^2	
		2 2 1	A1	Obtain correct answer a.e.f.	
		$v^2 = \frac{2}{\alpha} - \frac{1}{\alpha^4}$			
			[4]		
10	(i)	6 27	B1	Obtain correct values	
		129	B1	Obtain 3 rd correct value	
			[2]		
	(ii)	3	B1ft	State a correct value	
			[1]		
	(iii)	$5^{n+1} + 2^n$	B1	Correct expression for u_{n+1} seen	Any letter, usually k or n
			M1	Attempt to factorise $u_{n+1} + u_n$	Must deal with powers of 5 and 2
			A1	Obtain correct simplified answer	
			A1	Clear explanation why u_{n+1} is divisible by 3	Not $u_{n+1} + u_n$ divisible by 3
			B1	Clear statement of induction process	Provided other 4 marks earned
			[5]		